Work in progress . . .
This is a continuation of Part 1. In this section, we study the fourth test case in the reference: Determining the radii of convergence of power expansions around singular points of algebraic functions which involved the following function: $$ \begin{equation} f_4(z,w)=\left(z^{30}+z^{32}\right)+\left(z^{14}+z^{20}\right) w^5+\left(z^5+z^9\right)w^9+\left(z+z^3\right) w^{12}+6 w^{14}+\left(2+z^2\right) w^{15}=0 \end{equation} $$ Readers should review the paper and Part I first. The branch summary table over the set of finite singular points for this function was too long to include in the paper and is shown in the table below.
Table 1: Branch types and CLSPs
$s_n$ | $s_n$ Value | (Branch Type,CLSP) | $s_{1}$ | $0$ | $(T,s_{118})$, $(F_{3}^{4},s_{2})$, $(F_{4}^{9},s_{7})$, $(F_{5}^{16},s_{27})$, $(V_{2},s_{2})$ | $s_{2}$ | $-0.0511 - 0.1588 i$ | $(T,s_{118})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(V_{2},s_{1})$ | $s_{3}$ | $-0.0511 + 0.1588 i$ | $(T,s_{119})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(V_{2},s_{1})$ | $s_{4}$ | $0.1431 - 0.1047 i$ | $(T,s_{122})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(V_{2},s_{1})$ | $s_{5}$ | $0.1431 + 0.1047 i$ | $(T,s_{123})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(V_{2},s_{1})$ | $s_{6}$ | $-0.1855$ | $(T,s_{118})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(T,s_{1})$, $(V_{2},s_{1})$ | $s_{7}$ | $0.3839 - 0.3280 i$ | $(T,s_{122})$, $(T,s_{19})$, $(T,s_{19})$, $(T,s_{79})$, $(T,s_{53})$, $(T,s_{71})$, $(T,s_{23})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{41})$, $(T,s_{35})$, $(T,s_{55})$, $(T,s_{57})$, $(V_{2},s_{53})$ | $s_{8}$ | $0.3839 + 0.3280 i$ | $(T,s_{123})$, $(T,s_{20})$, $(T,s_{20})$, $(T,s_{80})$, $(T,s_{54})$, $(T,s_{72})$, $(T,s_{24})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{42})$, $(T,s_{36})$, $(T,s_{56})$, $(T,s_{58})$, $(V_{2},s_{54})$ | $s_{9}$ | $-0.2792 - 0.4284 i$ | $(T,s_{118})$, $(T,s_{25})$, $(T,s_{25})$, $(T,s_{61})$, $(T,s_{45})$, $(T,s_{85})$, $(T,s_{69})$, $(T,s_{59})$, $(T,s_{65})$, $(T,s_{21})$, $(T,s_{59})$, $(T,s_{21})$, $(T,s_{65})$, $(V_{2},s_{61})$ | $s_{10}$ | $-0.2792 + 0.4284 i$ | $(T,s_{119})$, $(T,s_{26})$, $(T,s_{26})$, $(T,s_{62})$, $(T,s_{46})$, $(T,s_{86})$, $(T,s_{70})$, $(T,s_{60})$, $(T,s_{66})$, $(T,s_{22})$, $(T,s_{60})$, $(T,s_{22})$, $(T,s_{66})$, $(V_{2},s_{62})$ | $s_{11}$ | $-0.4834 - 0.1976 i$ | $(T,s_{118})$, $(T,s_{25})$, $(T,s_{17})$, $(T,s_{45})$, $(T,s_{17})$, $(T,s_{88})$, $(T,s_{45})$, $(T,s_{67})$, $(T,s_{73})$, $(T,s_{31})$, $(T,s_{43})$, $(T,s_{31})$, $(T,s_{40})$, $(V_{2},s_{43})$ | $s_{12}$ | $-0.4834 + 0.1976 i$ | $(T,s_{119})$, $(T,s_{26})$, $(T,s_{18})$, $(T,s_{46})$, $(T,s_{18})$, $(T,s_{89})$, $(T,s_{46})$, $(T,s_{68})$, $(T,s_{74})$, $(T,s_{32})$, $(T,s_{44})$, $(T,s_{32})$, $(T,s_{40})$, $(V_{2},s_{44})$ | $s_{13}$ | $0.1227 - 0.5252 i$ | $(T,s_{138})$, $(T,s_{19})$, $(T,s_{47})$, $(T,s_{23})$, $(T,s_{47})$, $(T,s_{23})$, $(T,s_{7})$, $(T,s_{63})$, $(T,s_{75})$, $(T,s_{81})$, $(T,s_{29})$, $(T,s_{98})$, $(T,s_{29})$, $(V_{2},s_{81})$ | $s_{14}$ | $0.1227 + 0.5252 i$ | $(T,s_{139})$, $(T,s_{20})$, $(T,s_{48})$, $(T,s_{24})$, $(T,s_{48})$, $(T,s_{24})$, $(T,s_{8})$, $(T,s_{64})$, $(T,s_{76})$, $(T,s_{82})$, $(T,s_{30})$, $(T,s_{99})$, $(T,s_{30})$, $(V_{2},s_{82})$ | $s_{15}$ | $0.5618 - 0.0005 i$ | $(T,s_{124})$, $(T,s_{87})$, $(T,s_{27})$, $(T,s_{28})$, $(T,s_{87})$, $(T,s_{36})$, $(T,s_{35})$, $(T,s_{27})$, $(T,s_{28})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{16})$, $(T,s_{16})$, $(V_{2},s_{49})$ | $s_{16}$ | $0.5618 + 0.0005 i$ | $(T,s_{125})$, $(T,s_{87})$, $(T,s_{28})$, $(T,s_{27})$, $(T,s_{87})$, $(T,s_{35})$, $(T,s_{36})$, $(T,s_{28})$, $(T,s_{27})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{15})$, $(T,s_{15})$, $(V_{2},s_{50})$ | $s_{17}$ | $-0.5476 - 0.2293 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{45})$, $(T,s_{88})$, $(T,s_{73})$, $(T,s_{67})$, $(T,s_{73})$, $(T,s_{31})$, $(T,s_{43})$, $(T,s_{31})$, $(T,s_{11})$, $(T,s_{11})$, $(T,s_{83})$, $(V_{2},s_{67})$ | $s_{18}$ | $-0.5476 + 0.2293 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{46})$, $(T,s_{89})$, $(T,s_{74})$, $(T,s_{68})$, $(T,s_{74})$, $(T,s_{32})$, $(T,s_{44})$, $(T,s_{32})$, $(T,s_{12})$, $(T,s_{12})$, $(T,s_{84})$, $(V_{2},s_{68})$ | $s_{19}$ | $0.4473 - 0.4023 i$ | $(T,s_{122})$, $(T,s_{7})$, $(T,s_{79})$, $(T,s_{7})$, $(T,s_{53})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{41})$, $(T,s_{51})$, $(T,s_{55})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{57})$, $(V_{2},s_{79})$ | $s_{20}$ | $0.4473 + 0.4023 i$ | $(T,s_{123})$, $(T,s_{8})$, $(T,s_{80})$, $(T,s_{8})$, $(T,s_{54})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{42})$, $(T,s_{52})$, $(T,s_{56})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{58})$, $(V_{2},s_{80})$ | $s_{21}$ | $-0.2736 - 0.5458 i$ | $(T,s_{136})$, $(T,s_{25})$, $(T,s_{9})$, $(T,s_{9})$, $(T,s_{61})$, $(T,s_{25})$, $(T,s_{85})$, $(T,s_{77})$, $(T,s_{69})$, $(T,s_{65})$, $(T,s_{59})$, $(T,s_{59})$, $(T,s_{65})$, $(V_{2},s_{85})$ | $s_{22}$ | $-0.2736 + 0.5458 i$ | $(T,s_{137})$, $(T,s_{26})$, $(T,s_{10})$, $(T,s_{10})$, $(T,s_{62})$, $(T,s_{26})$, $(T,s_{86})$, $(T,s_{78})$, $(T,s_{70})$, $(T,s_{66})$, $(T,s_{60})$, $(T,s_{60})$, $(T,s_{66})$, $(V_{2},s_{86})$ | $s_{23}$ | $0.2482 - 0.5617 i$ | $(T,s_{138})$, $(T,s_{19})$, $(T,s_{47})$, $(T,s_{47})$, $(T,s_{7})$, $(T,s_{90})$, $(T,s_{63})$, $(T,s_{29})$, $(T,s_{98})$, $(T,s_{81})$, $(T,s_{29})$, $(T,s_{13})$, $(T,s_{13})$, $(V_{2},s_{63})$ | $s_{24}$ | $0.2482 + 0.5617 i$ | $(T,s_{139})$, $(T,s_{20})$, $(T,s_{48})$, $(T,s_{48})$, $(T,s_{8})$, $(T,s_{91})$, $(T,s_{64})$, $(T,s_{30})$, $(T,s_{99})$, $(T,s_{82})$, $(T,s_{30})$, $(T,s_{14})$, $(T,s_{14})$, $(V_{2},s_{64})$ | $s_{25}$ | $-0.3983 - 0.4778 i$ | $(T,s_{136})$, $(T,s_{9})$, $(T,s_{45})$, $(T,s_{61})$, $(T,s_{9})$, $(T,s_{69})$, $(T,s_{69})$, $(T,s_{85})$, $(T,s_{59})$, $(T,s_{65})$, $(T,s_{21})$, $(T,s_{21})$, $(T,s_{65})$, $(V_{2},s_{45})$ | $s_{26}$ | $-0.3983 + 0.4778 i$ | $(T,s_{137})$, $(T,s_{10})$, $(T,s_{46})$, $(T,s_{62})$, $(T,s_{10})$, $(T,s_{70})$, $(T,s_{70})$, $(T,s_{86})$, $(T,s_{60})$, $(T,s_{66})$, $(T,s_{22})$, $(T,s_{22})$, $(T,s_{66})$, $(V_{2},s_{46})$ | $s_{27}$ | $0.5986 - 0.2303 i$ | $(T,s_{122})$, $(T,s_{53})$, $(T,s_{79})$, $(T,s_{51})$, $(T,s_{38})$, $(T,s_{35})$, $(T,s_{38})$, $(T,s_{35})$, $(T,s_{57})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{15})$, $(T,s_{57})$, $(V_{2},s_{53})$ | $s_{28}$ | $0.5986 + 0.2303 i$ | $(T,s_{123})$, $(T,s_{54})$, $(T,s_{80})$, $(T,s_{52})$, $(T,s_{39})$, $(T,s_{36})$, $(T,s_{39})$, $(T,s_{36})$, $(T,s_{58})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{16})$, $(T,s_{58})$, $(V_{2},s_{54})$ | $s_{29}$ | $-0.0048 - 0.6440 i$ | $(T,s_{144})$, $(T,s_{9})$, $(T,s_{63})$, $(T,s_{23})$, $(T,s_{63})$, $(T,s_{47})$, $(T,s_{47})$, $(T,s_{102})$, $(T,s_{21})$, $(T,s_{13})$, $(T,s_{75})$, $(T,s_{92})$, $(T,s_{13})$, $(V_{2},s_{75})$ | $s_{30}$ | $-0.0048 + 0.6440 i$ | $(T,s_{145})$, $(T,s_{10})$, $(T,s_{64})$, $(T,s_{24})$, $(T,s_{64})$, $(T,s_{48})$, $(T,s_{48})$, $(T,s_{103})$, $(T,s_{22})$, $(T,s_{14})$, $(T,s_{76})$, $(T,s_{93})$, $(T,s_{14})$, $(V_{2},s_{76})$ | $s_{31}$ | $-0.5584 - 0.3214 i$ | $(T,s_{118})$, $(T,s_{25})$, $(T,s_{45})$, $(T,s_{17})$, $(T,s_{69})$, $(T,s_{45})$, $(T,s_{73})$, $(T,s_{17})$, $(T,s_{67})$, $(T,s_{43})$, $(T,s_{11})$, $(T,s_{43})$, $(T,s_{83})$, $(V_{2},s_{83})$ | $s_{32}$ | $-0.5584 + 0.3214 i$ | $(T,s_{119})$, $(T,s_{26})$, $(T,s_{46})$, $(T,s_{18})$, $(T,s_{70})$, $(T,s_{46})$, $(T,s_{74})$, $(T,s_{18})$, $(T,s_{68})$, $(T,s_{44})$, $(T,s_{12})$, $(T,s_{44})$, $(T,s_{84})$, $(V_{2},s_{84})$ | $s_{33}$ | $-0.6477 - 0.1319 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{67})$, $(T,s_{37})$, $(T,s_{88})$, $(T,s_{67})$, $(T,s_{34})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{83})$, $(T,s_{43})$, $(T,s_{40})$, $(T,s_{40})$, $(V_{2},s_{43})$ | $s_{34}$ | $-0.6477 + 0.1319 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{68})$, $(T,s_{37})$, $(T,s_{89})$, $(T,s_{68})$, $(T,s_{33})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{84})$, $(T,s_{44})$, $(T,s_{40})$, $(T,s_{40})$, $(V_{2},s_{44})$ | $s_{35}$ | $0.5839 - 0.3279 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{53})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{19})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{57})$, $(T,s_{55})$, $(T,s_{57})$, $(V_{2},s_{51})$ | $s_{36}$ | $0.5839 + 0.3279 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{54})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{20})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{58})$, $(T,s_{56})$, $(T,s_{58})$, $(V_{2},s_{52})$ | $s_{37}$ | $-0.6788$ | $(T,s_{118})$, $(T,s_{67})$, $(T,s_{68})$, $(T,s_{33})$, $(T,s_{34})$, $(T,s_{33})$, $(T,s_{34})$, $(T,s_{74})$, $(T,s_{73})$, $(T,s_{74})$, $(T,s_{73})$, $(T,s_{40})$, $(T,s_{40})$, $(V_{2},s_{67})$ | $s_{38}$ | $0.6664 - 0.1297 i$ | $(T,s_{124})$, $(T,s_{87})$, $(T,s_{27})$, $(T,s_{87})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{35})$, $(T,s_{35})$, $(T,s_{96})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{15})$, $(T,s_{49})$, $(V_{2},s_{50})$ | $s_{39}$ | $0.6664 + 0.1297 i$ | $(T,s_{125})$, $(T,s_{87})$, $(T,s_{28})$, $(T,s_{87})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{36})$, $(T,s_{36})$, $(T,s_{97})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{16})$, $(T,s_{50})$, $(V_{2},s_{49})$ | $s_{40}$ | $-0.6814$ | $(T,s_{118})$, $(T,s_{67})$, $(T,s_{68})$, $(T,s_{37})$, $(T,s_{37})$, $(T,s_{33})$, $(T,s_{34})$, $(T,s_{33})$, $(T,s_{34})$, $(T,s_{74})$, $(T,s_{73})$, $(T,s_{74})$, $(T,s_{73})$, $(V_{2},s_{83})$ | $s_{41}$ | $0.5416 - 0.4400 i$ | $(T,s_{122})$, $(T,s_{19})$, $(T,s_{7})$, $(T,s_{79})$, $(T,s_{19})$, $(T,s_{53})$, $(T,s_{53})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{51})$, $(T,s_{55})$, $(T,s_{57})$, $(T,s_{57})$, $(V_{2},s_{51})$ | $s_{42}$ | $0.5416 + 0.4400 i$ | $(T,s_{123})$, $(T,s_{20})$, $(T,s_{8})$, $(T,s_{80})$, $(T,s_{20})$, $(T,s_{54})$, $(T,s_{54})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{52})$, $(T,s_{56})$, $(T,s_{58})$, $(T,s_{58})$, $(V_{2},s_{52})$ | $s_{43}$ | $-0.6397 - 0.2804 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{17})$, $(T,s_{45})$, $(T,s_{88})$, $(T,s_{17})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{67})$, $(T,s_{31})$, $(T,s_{31})$, $(T,s_{33})$, $(T,s_{83})$, $(V_{2},s_{33})$ | $s_{44}$ | $-0.6397 + 0.2804 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{18})$, $(T,s_{46})$, $(T,s_{89})$, $(T,s_{18})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{68})$, $(T,s_{32})$, $(T,s_{32})$, $(T,s_{34})$, $(T,s_{84})$, $(V_{2},s_{34})$ | $s_{45}$ | $-0.5220 - 0.4699 i$ | $(T,s_{136})$, $(T,s_{25})$, $(T,s_{61})$, $(T,s_{69})$, $(T,s_{61})$, $(T,s_{69})$, $(T,s_{31})$, $(T,s_{17})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{43})$, $(V_{2},s_{25})$ | $s_{46}$ | $-0.5220 + 0.4699 i$ | $(T,s_{137})$, $(T,s_{26})$, $(T,s_{62})$, $(T,s_{70})$, $(T,s_{62})$, $(T,s_{70})$, $(T,s_{32})$, $(T,s_{18})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{44})$, $(V_{2},s_{26})$ | $s_{47}$ | $0.0644 - 0.7098 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{63})$, $(T,s_{63})$, $(T,s_{23})$, $(T,s_{108})$, $(T,s_{81})$, $(T,s_{75})$, $(T,s_{13})$, $(T,s_{92})$, $(T,s_{29})$, $(T,s_{13})$, $(T,s_{29})$, $(V_{2},s_{108})$ | $s_{48}$ | $0.0644 + 0.7098 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{64})$, $(T,s_{64})$, $(T,s_{24})$, $(T,s_{109})$, $(T,s_{82})$, $(T,s_{76})$, $(T,s_{14})$, $(T,s_{93})$, $(T,s_{30})$, $(T,s_{14})$, $(T,s_{30})$, $(V_{2},s_{109})$ | $s_{49}$ | $0.7173 - 0.0097 i$ | $(T,s_{124})$, $(T,s_{87})$, $(T,s_{87})$, $(T,s_{27})$, $(T,s_{28})$, $(T,s_{97})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{96})$, $(T,s_{38})$, $(T,s_{39})$, $(T,s_{50})$, $(T,s_{50})$, $(V_{2},s_{39})$ | $s_{50}$ | $0.7173 + 0.0097 i$ | $(T,s_{125})$, $(T,s_{87})$, $(T,s_{87})$, $(T,s_{28})$, $(T,s_{27})$, $(T,s_{96})$, $(T,s_{96})$, $(T,s_{97})$, $(T,s_{97})$, $(T,s_{39})$, $(T,s_{38})$, $(T,s_{49})$, $(T,s_{49})$, $(V_{2},s_{38})$ | $s_{51}$ | $0.5998 - 0.3948 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{79})$, $(T,s_{53})$, $(T,s_{53})$, $(T,s_{19})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{35})$, $(T,s_{55})$, $(T,s_{57})$, $(T,s_{57})$, $(V_{2},s_{35})$ | $s_{52}$ | $0.5998 + 0.3948 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{80})$, $(T,s_{54})$, $(T,s_{54})$, $(T,s_{20})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{36})$, $(T,s_{56})$, $(T,s_{58})$, $(T,s_{58})$, $(V_{2},s_{36})$ | $s_{53}$ | $0.5889 - 0.4371 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{79})$, $(T,s_{19})$, $(T,s_{71})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{51})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{57})$, $(T,s_{57})$, $(V_{2},s_{27})$ | $s_{54}$ | $0.5889 + 0.4371 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{80})$, $(T,s_{20})$, $(T,s_{72})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{52})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{58})$, $(T,s_{58})$, $(V_{2},s_{28})$ | $s_{55}$ | $0.4492 - 0.5842 i$ | $(T,s_{126})$, $(T,s_{19})$, $(T,s_{94})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{94})$, $(T,s_{53})$, $(T,s_{23})$, $(T,s_{98})$, $(T,s_{98})$, $(T,s_{41})$, $(T,s_{41})$, $(T,s_{81})$, $(V_{2},s_{23})$ | $s_{56}$ | $0.4492 + 0.5842 i$ | $(T,s_{127})$, $(T,s_{20})$, $(T,s_{95})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{95})$, $(T,s_{54})$, $(T,s_{24})$, $(T,s_{99})$, $(T,s_{99})$, $(T,s_{42})$, $(T,s_{42})$, $(T,s_{82})$, $(V_{2},s_{24})$ | $s_{57}$ | $0.6600 - 0.3677 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{53})$, $(T,s_{53})$, $(T,s_{79})$, $(T,s_{19})$, $(T,s_{51})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{35})$, $(T,s_{55})$, $(V_{2},s_{55})$ | $s_{58}$ | $0.6600 + 0.3677 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{54})$, $(T,s_{54})$, $(T,s_{80})$, $(T,s_{20})$, $(T,s_{52})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{36})$, $(T,s_{56})$, $(V_{2},s_{56})$ | $s_{59}$ | $-0.2558 - 0.7249 i$ | $(T,s_{150})$, $(T,s_{61})$, $(T,s_{102})$, $(T,s_{104})$, $(T,s_{102})$, $(T,s_{104})$, $(T,s_{77})$, $(T,s_{21})$, $(T,s_{92})$, $(T,s_{100})$, $(T,s_{92})$, $(T,s_{21})$, $(T,s_{75})$, $(V_{2},s_{75})$ | $s_{60}$ | $-0.2558 + 0.7249 i$ | $(T,s_{151})$, $(T,s_{62})$, $(T,s_{103})$, $(T,s_{105})$, $(T,s_{103})$, $(T,s_{105})$, $(T,s_{78})$, $(T,s_{22})$, $(T,s_{93})$, $(T,s_{101})$, $(T,s_{93})$, $(T,s_{22})$, $(T,s_{76})$, $(V_{2},s_{76})$ | $s_{61}$ | $-0.5103 - 0.5840 i$ | $(T,s_{136})$, $(T,s_{45})$, $(T,s_{77})$, $(T,s_{77})$, $(T,s_{69})$, $(T,s_{31})$, $(T,s_{69})$, $(T,s_{85})$, $(T,s_{59})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{65})$, $(T,s_{21})$, $(V_{2},s_{31})$ | $s_{62}$ | $-0.5103 + 0.5840 i$ | $(T,s_{137})$, $(T,s_{46})$, $(T,s_{78})$, $(T,s_{78})$, $(T,s_{70})$, $(T,s_{32})$, $(T,s_{70})$, $(T,s_{86})$, $(T,s_{60})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{66})$, $(T,s_{22})$, $(V_{2},s_{32})$ | $s_{63}$ | $0.2395 - 0.7416 i$ | $(T,s_{138})$, $(T,s_{94})$, $(T,s_{47})$, $(T,s_{47})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{23})$, $(T,s_{29})$, $(T,s_{81})$, $(T,s_{98})$, $(T,s_{81})$, $(T,s_{98})$, $(T,s_{13})$, $(V_{2},s_{23})$ | $s_{64}$ | $0.2395 + 0.7416 i$ | $(T,s_{139})$, $(T,s_{95})$, $(T,s_{48})$, $(T,s_{48})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{24})$, $(T,s_{30})$, $(T,s_{82})$, $(T,s_{99})$, $(T,s_{82})$, $(T,s_{99})$, $(T,s_{14})$, $(V_{2},s_{24})$ | $s_{65}$ | $-0.5522 - 0.5537 i$ | $(T,s_{136})$, $(T,s_{45})$, $(T,s_{77})$, $(T,s_{45})$, $(T,s_{61})$, $(T,s_{61})$, $(T,s_{69})$, $(T,s_{69})$, $(T,s_{31})$, $(T,s_{17})$, $(T,s_{85})$, $(T,s_{85})$, $(T,s_{21})$, $(V_{2},s_{11})$ | $s_{66}$ | $-0.5522 + 0.5537 i$ | $(T,s_{137})$, $(T,s_{46})$, $(T,s_{78})$, $(T,s_{46})$, $(T,s_{62})$, $(T,s_{62})$, $(T,s_{70})$, $(T,s_{70})$, $(T,s_{32})$, $(T,s_{18})$, $(T,s_{86})$, $(T,s_{86})$, $(T,s_{22})$, $(V_{2},s_{12})$ | $s_{67}$ | $-0.7538 - 0.2106 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{17})$, $(T,s_{88})$, $(T,s_{45})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{33})$, $(T,s_{33})$, $(T,s_{40})$, $(T,s_{43})$, $(T,s_{83})$, $(T,s_{83})$, $(V_{2},s_{17})$ | $s_{68}$ | $-0.7538 + 0.2106 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{18})$, $(T,s_{89})$, $(T,s_{46})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{34})$, $(T,s_{34})$, $(T,s_{40})$, $(T,s_{44})$, $(T,s_{84})$, $(T,s_{84})$, $(V_{2},s_{18})$ | $s_{69}$ | $-0.5939 - 0.5122 i$ | $(T,s_{136})$, $(T,s_{25})$, $(T,s_{45})$, $(T,s_{45})$, $(T,s_{61})$, $(T,s_{61})$, $(T,s_{31})$, $(T,s_{17})$, $(T,s_{65})$, $(T,s_{85})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{43})$, $(V_{2},s_{88})$ | $s_{70}$ | $-0.5939 + 0.5122 i$ | $(T,s_{137})$, $(T,s_{26})$, $(T,s_{46})$, $(T,s_{46})$, $(T,s_{62})$, $(T,s_{62})$, $(T,s_{32})$, $(T,s_{18})$, $(T,s_{66})$, $(T,s_{86})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{44})$, $(V_{2},s_{89})$ | $s_{71}$ | $0.6542 - 0.4333 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{79})$, $(T,s_{79})$, $(T,s_{53})$, $(T,s_{53})$, $(T,s_{19})$, $(T,s_{51})$, $(T,s_{51})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{57})$, $(T,s_{57})$, $(V_{2},s_{94})$ | $s_{72}$ | $0.6542 + 0.4333 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{80})$, $(T,s_{80})$, $(T,s_{54})$, $(T,s_{54})$, $(T,s_{20})$, $(T,s_{52})$, $(T,s_{52})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{58})$, $(T,s_{58})$, $(V_{2},s_{95})$ | $s_{73}$ | $-0.7620 - 0.2140 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{17})$, $(T,s_{88})$, $(T,s_{67})$, $(T,s_{45})$, $(T,s_{67})$, $(T,s_{33})$, $(T,s_{43})$, $(T,s_{40})$, $(T,s_{43})$, $(T,s_{83})$, $(T,s_{83})$, $(V_{2},s_{45})$ | $s_{74}$ | $-0.7620 + 0.2140 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{18})$, $(T,s_{89})$, $(T,s_{68})$, $(T,s_{46})$, $(T,s_{68})$, $(T,s_{34})$, $(T,s_{44})$, $(T,s_{40})$, $(T,s_{44})$, $(T,s_{84})$, $(T,s_{84})$, $(V_{2},s_{46})$ | $s_{75}$ | $-0.0873 - 0.7871 i$ | $(T,s_{144})$, $(T,s_{104})$, $(T,s_{110})$, $(T,s_{102})$, $(T,s_{104})$, $(T,s_{47})$, $(T,s_{102})$, $(T,s_{47})$, $(T,s_{110})$, $(T,s_{100})$, $(T,s_{92})$, $(T,s_{92})$, $(T,s_{29})$, $(V_{2},s_{29})$ | $s_{76}$ | $-0.0873 + 0.7871 i$ | $(T,s_{145})$, $(T,s_{105})$, $(T,s_{111})$, $(T,s_{103})$, $(T,s_{105})$, $(T,s_{48})$, $(T,s_{103})$, $(T,s_{48})$, $(T,s_{111})$, $(T,s_{101})$, $(T,s_{93})$, $(T,s_{93})$, $(T,s_{30})$, $(V_{2},s_{30})$ | $s_{77}$ | $-0.4366 - 0.6651 i$ | $(T,s_{136})$, $(T,s_{25})$, $(T,s_{61})$, $(T,s_{61})$, $(T,s_{9})$, $(T,s_{69})$, $(T,s_{85})$, $(T,s_{59})$, $(T,s_{85})$, $(T,s_{59})$, $(T,s_{65})$, $(T,s_{21})$, $(T,s_{65})$, $(V_{2},s_{25})$ | $s_{78}$ | $-0.4366 + 0.6651 i$ | $(T,s_{137})$, $(T,s_{26})$, $(T,s_{62})$, $(T,s_{62})$, $(T,s_{10})$, $(T,s_{70})$, $(T,s_{86})$, $(T,s_{60})$, $(T,s_{86})$, $(T,s_{60})$, $(T,s_{66})$, $(T,s_{22})$, $(T,s_{66})$, $(V_{2},s_{26})$ | $s_{79}$ | $0.7129 - 0.3861 i$ | $(T,s_{122})$, $(T,s_{27})$, $(T,s_{53})$, $(T,s_{53})$, $(T,s_{38})$, $(T,s_{51})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{71})$, $(T,s_{35})$, $(T,s_{57})$, $(T,s_{55})$, $(T,s_{57})$, $(V_{2},s_{38})$ | $s_{80}$ | $0.7129 + 0.3861 i$ | $(T,s_{123})$, $(T,s_{28})$, $(T,s_{54})$, $(T,s_{54})$, $(T,s_{39})$, $(T,s_{52})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{72})$, $(T,s_{36})$, $(T,s_{58})$, $(T,s_{56})$, $(T,s_{58})$, $(V_{2},s_{39})$ | $s_{81}$ | $0.3594 - 0.7350 i$ | $(T,s_{138})$, $(T,s_{94})$, $(T,s_{47})$, $(T,s_{94})$, $(T,s_{90})$, $(T,s_{63})$, $(T,s_{90})$, $(T,s_{63})$, $(T,s_{29})$, $(T,s_{55})$, $(T,s_{98})$, $(T,s_{98})$, $(T,s_{13})$, $(V_{2},s_{13})$ | $s_{82}$ | $0.3594 + 0.7350 i$ | $(T,s_{139})$, $(T,s_{95})$, $(T,s_{48})$, $(T,s_{95})$, $(T,s_{91})$, $(T,s_{64})$, $(T,s_{91})$, $(T,s_{64})$, $(T,s_{30})$, $(T,s_{56})$, $(T,s_{99})$, $(T,s_{99})$, $(T,s_{14})$, $(V_{2},s_{14})$ | $s_{83}$ | $-0.7782 - 0.2551 i$ | $(T,s_{118})$, $(T,s_{88})$, $(T,s_{17})$, $(T,s_{88})$, $(T,s_{45})$, $(T,s_{67})$, $(T,s_{67})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{33})$, $(T,s_{43})$, $(T,s_{31})$, $(T,s_{43})$, $(V_{2},s_{31})$ | $s_{84}$ | $-0.7782 + 0.2551 i$ | $(T,s_{119})$, $(T,s_{89})$, $(T,s_{18})$, $(T,s_{89})$, $(T,s_{46})$, $(T,s_{68})$, $(T,s_{68})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{34})$, $(T,s_{44})$, $(T,s_{32})$, $(T,s_{44})$, $(V_{2},s_{32})$ | $s_{85}$ | $-0.6011 - 0.5711 i$ | $(T,s_{136})$, $(T,s_{45})$, $(T,s_{77})$, $(T,s_{45})$, $(T,s_{61})$, $(T,s_{69})$, $(T,s_{61})$, $(T,s_{69})$, $(T,s_{31})$, $(T,s_{17})$, $(T,s_{65})$, $(T,s_{65})$, $(T,s_{43})$, $(V_{2},s_{43})$ | $s_{86}$ | $-0.6011 + 0.5711 i$ | $(T,s_{137})$, $(T,s_{46})$, $(T,s_{78})$, $(T,s_{46})$, $(T,s_{62})$, $(T,s_{70})$, $(T,s_{62})$, $(T,s_{70})$, $(T,s_{32})$, $(T,s_{18})$, $(T,s_{66})$, $(T,s_{66})$, $(T,s_{44})$, $(V_{2},s_{44})$ | $s_{87}$ | $0.8419$ | $(T,s_{124})$, $(T,s_{27})$, $(T,s_{28})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{38})$, $(T,s_{39})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{49})$, $(V_{2},s_{124})$ | $s_{88}$ | $-0.7854 - 0.3371 i$ | $(T,s_{118})$, $(T,s_{45})$, $(T,s_{69})$, $(T,s_{67})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{67})$, $(T,s_{31})$, $(T,s_{33})$, $(T,s_{83})$, $(T,s_{43})$, $(T,s_{43})$, $(T,s_{83})$, $(V_{2},s_{69})$ | $s_{89}$ | $-0.7854 + 0.3371 i$ | $(T,s_{119})$, $(T,s_{46})$, $(T,s_{70})$, $(T,s_{68})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{68})$, $(T,s_{32})$, $(T,s_{34})$, $(T,s_{84})$, $(T,s_{44})$, $(T,s_{44})$, $(T,s_{84})$, $(V_{2},s_{70})$ | $s_{90}$ | $0.4578 - 0.7352 i$ | $(T,s_{138})$, $(T,s_{19})$, $(T,s_{94})$, $(T,s_{94})$, $(T,s_{63})$, $(T,s_{53})$, $(T,s_{55})$, $(T,s_{55})$, $(T,s_{98})$, $(T,s_{98})$, $(T,s_{81})$, $(T,s_{81})$, $(T,s_{41})$, $(V_{2},s_{7})$ | $s_{91}$ | $0.4578 + 0.7352 i$ | $(T,s_{139})$, $(T,s_{20})$, $(T,s_{95})$, $(T,s_{95})$, $(T,s_{64})$, $(T,s_{54})$, $(T,s_{56})$, $(T,s_{56})$, $(T,s_{99})$, $(T,s_{99})$, $(T,s_{82})$, $(T,s_{82})$, $(T,s_{42})$, $(V_{2},s_{8})$ | $s_{92}$ | $-0.1489 - 0.8630 i$ | $(T,s_{144})$, $(T,s_{104})$, $(T,s_{110})$, $(T,s_{102})$, $(T,s_{104})$, $(T,s_{102})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{100})$, $(T,s_{100})$, $(T,s_{75})$, $(T,s_{75})$, $(T,s_{59})$, $(V_{2},s_{114})$ | $s_{93}$ | $-0.1489 + 0.8630 i$ | $(T,s_{145})$, $(T,s_{105})$, $(T,s_{111})$, $(T,s_{103})$, $(T,s_{105})$, $(T,s_{103})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{101})$, $(T,s_{101})$, $(T,s_{76})$, $(T,s_{76})$, $(T,s_{60})$, $(V_{2},s_{115})$ | $s_{94}$ | $0.5415 - 0.6974 i$ | $(T,s_{126})$, $(T,s_{19})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{53})$, $(T,s_{71})$, $(T,s_{98})$, $(T,s_{55})$, $(T,s_{98})$, $(T,s_{55})$, $(T,s_{81})$, $(T,s_{41})$, $(T,s_{81})$, $(V_{2},s_{71})$ | $s_{95}$ | $0.5415 + 0.6974 i$ | $(T,s_{127})$, $(T,s_{20})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{54})$, $(T,s_{72})$, $(T,s_{99})$, $(T,s_{56})$, $(T,s_{99})$, $(T,s_{56})$, $(T,s_{82})$, $(T,s_{42})$, $(T,s_{82})$, $(V_{2},s_{72})$ | $s_{96}$ | $0.8863 - 0.0763 i$ | $(T,s_{124})$, $(T,s_{87})$, $(T,s_{87})$, $(T,s_{27})$, $(T,s_{35})$, $(T,s_{97})$, $(T,s_{97})$, $(T,s_{38})$, $(T,s_{50})$, $(T,s_{39})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{49})$, $(V_{2},s_{57})$ | $s_{97}$ | $0.8863 + 0.0763 i$ | $(T,s_{125})$, $(T,s_{87})$, $(T,s_{87})$, $(T,s_{28})$, $(T,s_{36})$, $(T,s_{96})$, $(T,s_{96})$, $(T,s_{39})$, $(T,s_{49})$, $(T,s_{38})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{50})$, $(V_{2},s_{58})$ | $s_{98}$ | $0.4373 - 0.7850 i$ | $(T,s_{138})$, $(T,s_{47})$, $(T,s_{94})$, $(T,s_{94})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{63})$, $(T,s_{55})$, $(T,s_{53})$, $(T,s_{55})$, $(T,s_{81})$, $(T,s_{81})$, $(T,s_{41})$, $(V_{2},s_{53})$ | $s_{99}$ | $0.4373 + 0.7850 i$ | $(T,s_{139})$, $(T,s_{48})$, $(T,s_{95})$, $(T,s_{95})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{64})$, $(T,s_{56})$, $(T,s_{54})$, $(T,s_{56})$, $(T,s_{82})$, $(T,s_{82})$, $(T,s_{42})$, $(V_{2},s_{54})$ | $s_{100}$ | $-0.2518 - 0.9314 i$ | $(T,s_{144})$, $(T,s_{110})$, $(T,s_{104})$, $(T,s_{102})$, $(T,s_{102})$, $(T,s_{104})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{92})$, $(T,s_{92})$, $(T,s_{59})$, $(T,s_{59})$, $(T,s_{75})$, $(V_{2},s_{110})$ | $s_{101}$ | $-0.2518 + 0.9314 i$ | $(T,s_{145})$, $(T,s_{111})$, $(T,s_{105})$, $(T,s_{103})$, $(T,s_{103})$, $(T,s_{105})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{93})$, $(T,s_{93})$, $(T,s_{60})$, $(T,s_{60})$, $(T,s_{76})$, $(V_{2},s_{111})$ | $s_{102}$ | $-0.1680 - 0.9516 i$ | $(T,s_{144})$, $(T,s_{110})$, $(T,s_{104})$, $(T,s_{104})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{100})$, $(T,s_{100})$, $(T,s_{92})$, $(T,s_{92})$, $(T,s_{110})$, $(T,s_{106})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{103}$ | $-0.1680 + 0.9516 i$ | $(T,s_{145})$, $(T,s_{111})$, $(T,s_{105})$, $(T,s_{105})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{101})$, $(T,s_{101})$, $(T,s_{93})$, $(T,s_{93})$, $(T,s_{111})$, $(T,s_{107})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{104}$ | $-0.2304 - 0.9598 i$ | $(T,s_{144})$, $(T,s_{110})$, $(T,s_{102})$, $(T,s_{102})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{92})$, $(T,s_{100})$, $(T,s_{100})$, $(T,s_{92})$, $(T,s_{75})$, $(T,s_{106})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{105}$ | $-0.2304 + 0.9598 i$ | $(T,s_{145})$, $(T,s_{111})$, $(T,s_{103})$, $(T,s_{103})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{93})$, $(T,s_{101})$, $(T,s_{101})$, $(T,s_{93})$, $(T,s_{76})$, $(T,s_{107})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{106}$ | $-0.0130 - 0.9876 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{108})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{110})$, $(V_{2},s_{110})$ | $s_{107}$ | $-0.0130 + 0.9876 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{109})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{111})$, $(V_{2},s_{111})$ | $s_{108}$ | $0.0140 - 0.9884 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{109}$ | $0.0140 + 0.9884 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{110}$ | $- 1.0000 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{116})$, $(T,s_{108})$, $(T,s_{114})$, $(T,s_{106})$, $(V_{9},s_{114})$ | $s_{111}$ | $1.000 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{117})$, $(T,s_{109})$, $(T,s_{115})$, $(T,s_{107})$, $(V_{9},s_{115})$ | $s_{112}$ | $0.0174 - 1.0090 i$ | $(T,s_{144})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{108})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{113}$ | $0.0174 + 1.0090 i$ | $(T,s_{145})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{109})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{114}$ | $-0.0125 - 1.0105 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{108})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{115}$ | $-0.0125 + 1.0105 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{109})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{116}$ | $0.0041 - 1.0174 i$ | $(T,s_{144})$, $(T,s_{112})$, $(T,s_{112})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{108})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{106})$, $(V_{2},s_{110})$ | $s_{117}$ | $0.0041 + 1.0174 i$ | $(T,s_{145})$, $(T,s_{113})$, $(T,s_{113})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{109})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{107})$, $(V_{2},s_{111})$ | $s_{118}$ | $-1.0731 - 0.2103 i$ | $(V_{2},s_{120})$, $(T,s_{120})$, $(T,s_{128})$, $(T,s_{121})$, $(T,s_{67})$, $(T,s_{134})$, $(T,s_{33})$, $(T,s_{73})$, $(T,s_{73})$, $(T,s_{33})$, $(T,s_{43})$, $(T,s_{40})$, $(T,s_{83})$, $(T,s_{83})$ | $s_{119}$ | $-1.0731 + 0.2103 i$ | $(V_{2},s_{121})$, $(T,s_{121})$, $(T,s_{129})$, $(T,s_{120})$, $(T,s_{68})$, $(T,s_{135})$, $(T,s_{34})$, $(T,s_{74})$, $(T,s_{74})$, $(T,s_{34})$, $(T,s_{44})$, $(T,s_{40})$, $(T,s_{84})$, $(T,s_{84})$ | $s_{120}$ | $-1.1459 - 0.0600 i$ | $(V_{2},s_{121})$, $(T,s_{121})$, $(T,s_{118})$, $(T,s_{119})$, $(T,s_{128})$, $(T,s_{129})$, $(T,s_{134})$, $(T,s_{33})$, $(T,s_{73})$, $(T,s_{74})$, $(T,s_{73})$, $(T,s_{83})$, $(T,s_{40})$, $(T,s_{83})$ | $s_{121}$ | $-1.1459 + 0.0600 i$ | $(V_{2},s_{120})$, $(T,s_{120})$, $(T,s_{119})$, $(T,s_{118})$, $(T,s_{129})$, $(T,s_{128})$, $(T,s_{135})$, $(T,s_{34})$, $(T,s_{74})$, $(T,s_{73})$, $(T,s_{74})$, $(T,s_{84})$, $(T,s_{40})$, $(T,s_{84})$ | $s_{122}$ | $1.0345 - 0.6353 i$ | $(V_{2},s_{132})$, $(T,s_{132})$, $(T,s_{130})$, $(T,s_{126})$, $(T,s_{53})$, $(T,s_{140})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{57})$, $(T,s_{57})$ | $s_{123}$ | $1.0345 + 0.6353 i$ | $(V_{2},s_{133})$, $(T,s_{133})$, $(T,s_{131})$, $(T,s_{127})$, $(T,s_{54})$, $(T,s_{141})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{58})$, $(T,s_{58})$ | $s_{124}$ | $1.2292 - 0.0476 i$ | $(V_{2},s_{125})$, $(T,s_{125})$, $(T,s_{130})$, $(T,s_{131})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{38})$, $(T,s_{39})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{49})$ | $s_{125}$ | $1.2292 + 0.0476 i$ | $(V_{2},s_{124})$, $(T,s_{124})$, $(T,s_{131})$, $(T,s_{130})$, $(T,s_{96})$, $(T,s_{97})$, $(T,s_{96})$, $(T,s_{97})$, $(T,s_{39})$, $(T,s_{38})$, $(T,s_{49})$, $(T,s_{50})$, $(T,s_{49})$, $(T,s_{50})$ | $s_{126}$ | $0.9601 - 0.7750 i$ | $(V_{2},s_{122})$, $(T,s_{122})$, $(T,s_{132})$, $(T,s_{53})$, $(T,s_{140})$, $(T,s_{53})$, $(T,s_{138})$, $(T,s_{98})$, $(T,s_{71})$, $(T,s_{51})$, $(T,s_{55})$, $(T,s_{41})$, $(T,s_{57})$, $(T,s_{57})$ | $s_{127}$ | $0.9601 + 0.7750 i$ | $(V_{2},s_{123})$, $(T,s_{123})$, $(T,s_{133})$, $(T,s_{54})$, $(T,s_{141})$, $(T,s_{54})$, $(T,s_{139})$, $(T,s_{99})$, $(T,s_{72})$, $(T,s_{52})$, $(T,s_{56})$, $(T,s_{42})$, $(T,s_{58})$, $(T,s_{58})$ | $s_{128}$ | $-1.1894 - 0.3490 i$ | $(V_{2},s_{118})$, $(T,s_{118})$, $(T,s_{120})$, $(T,s_{134})$, $(T,s_{121})$, $(T,s_{67})$, $(T,s_{73})$, $(T,s_{33})$, $(T,s_{73})$, $(T,s_{43})$, $(T,s_{40})$, $(T,s_{43})$, $(T,s_{83})$, $(T,s_{83})$ | $s_{129}$ | $-1.1894 + 0.3490 i$ | $(V_{2},s_{119})$, $(T,s_{119})$, $(T,s_{121})$, $(T,s_{135})$, $(T,s_{120})$, $(T,s_{68})$, $(T,s_{74})$, $(T,s_{34})$, $(T,s_{74})$, $(T,s_{44})$, $(T,s_{40})$, $(T,s_{44})$, $(T,s_{84})$, $(T,s_{84})$ | $s_{130}$ | $1.2086 - 0.3062 i$ | $(V_{2},s_{132})$, $(T,s_{124})$, $(T,s_{132})$, $(T,s_{125})$, $(T,s_{122})$, $(T,s_{131})$, $(T,s_{79})$, $(T,s_{96})$, $(T,s_{38})$, $(T,s_{96})$, $(T,s_{71})$, $(T,s_{57})$, $(T,s_{71})$, $(T,s_{49})$ | $s_{131}$ | $1.2086 + 0.3062 i$ | $(V_{2},s_{133})$, $(T,s_{125})$, $(T,s_{133})$, $(T,s_{124})$, $(T,s_{123})$, $(T,s_{130})$, $(T,s_{80})$, $(T,s_{97})$, $(T,s_{39})$, $(T,s_{97})$, $(T,s_{72})$, $(T,s_{58})$, $(T,s_{72})$, $(T,s_{50})$ | $s_{132}$ | $1.1579 - 0.5443 i$ | $(V_{2},s_{122})$, $(T,s_{130})$, $(T,s_{122})$, $(T,s_{124})$, $(T,s_{126})$, $(T,s_{51})$, $(T,s_{140})$, $(T,s_{51})$, $(T,s_{71})$, $(T,s_{96})$, $(T,s_{71})$, $(T,s_{57})$, $(T,s_{49})$, $(T,s_{57})$ | $s_{133}$ | $1.1579 + 0.5443 i$ | $(V_{2},s_{123})$, $(T,s_{131})$, $(T,s_{123})$, $(T,s_{125})$, $(T,s_{127})$, $(T,s_{52})$, $(T,s_{141})$, $(T,s_{52})$, $(T,s_{72})$, $(T,s_{97})$, $(T,s_{72})$, $(T,s_{58})$, $(T,s_{50})$, $(T,s_{58})$ | $s_{134}$ | $-1.1534 - 0.5558 i$ | $(V_{2},s_{128})$, $(T,s_{128})$, $(T,s_{118})$, $(T,s_{120})$, $(T,s_{136})$, $(T,s_{67})$, $(T,s_{142})$, $(T,s_{67})$, $(T,s_{146})$, $(T,s_{65})$, $(T,s_{83})$, $(T,s_{43})$, $(T,s_{83})$, $(T,s_{85})$ | $s_{135}$ | $-1.1534 + 0.5558 i$ | $(V_{2},s_{129})$, $(T,s_{129})$, $(T,s_{119})$, $(T,s_{121})$, $(T,s_{137})$, $(T,s_{68})$, $(T,s_{143})$, $(T,s_{68})$, $(T,s_{147})$, $(T,s_{66})$, $(T,s_{84})$, $(T,s_{44})$, $(T,s_{84})$, $(T,s_{86})$ | $s_{136}$ | $-1.0363 - 0.7796 i$ | $(V_{2},s_{142})$, $(T,s_{134})$, $(T,s_{128})$, $(T,s_{88})$, $(T,s_{142})$, $(T,s_{69})$, $(T,s_{146})$, $(T,s_{67})$, $(T,s_{83})$, $(T,s_{65})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{85})$, $(T,s_{43})$ | $s_{137}$ | $-1.0363 + 0.7796 i$ | $(V_{2},s_{143})$, $(T,s_{135})$, $(T,s_{129})$, $(T,s_{89})$, $(T,s_{143})$, $(T,s_{70})$, $(T,s_{147})$, $(T,s_{68})$, $(T,s_{84})$, $(T,s_{66})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{86})$, $(T,s_{44})$ | $s_{138}$ | $0.8316 - 1.0206 i$ | $(T,s_{126})$, $(T,s_{140})$, $(T,s_{122})$, $(T,s_{90})$, $(T,s_{53})$, $(T,s_{148})$, $(T,s_{98})$, $(T,s_{154})$, $(T,s_{98})$, $(T,s_{158})$, $(T,s_{41})$, $(T,s_{81})$, $(T,s_{81})$, $(V_{2},s_{140})$ | $s_{139}$ | $0.8316 + 1.0206 i$ | $(T,s_{127})$, $(T,s_{141})$, $(T,s_{123})$, $(T,s_{91})$, $(T,s_{54})$, $(T,s_{149})$, $(T,s_{99})$, $(T,s_{155})$, $(T,s_{99})$, $(T,s_{159})$, $(T,s_{42})$, $(T,s_{82})$, $(T,s_{82})$, $(V_{2},s_{141})$ | $s_{140}$ | $0.9313 - 0.9617 i$ | $(T,s_{126})$, $(T,s_{122})$, $(T,s_{132})$, $(T,s_{53})$, $(T,s_{138})$, $(T,s_{98})$, $(T,s_{148})$, $(T,s_{98})$, $(T,s_{154})$, $(T,s_{41})$, $(T,s_{55})$, $(T,s_{81})$, $(T,s_{81})$, $(V_{2},s_{138})$ | $s_{141}$ | $0.9313 + 0.9617 i$ | $(T,s_{127})$, $(T,s_{123})$, $(T,s_{133})$, $(T,s_{54})$, $(T,s_{139})$, $(T,s_{99})$, $(T,s_{149})$, $(T,s_{99})$, $(T,s_{155})$, $(T,s_{42})$, $(T,s_{56})$, $(T,s_{82})$, $(T,s_{82})$, $(V_{2},s_{139})$ | $s_{142}$ | $-1.0129 - 0.9700 i$ | $(T,s_{136})$, $(T,s_{134})$, $(T,s_{128})$, $(T,s_{69})$, $(T,s_{146})$, $(T,s_{69})$, $(T,s_{150})$, $(T,s_{59})$, $(T,s_{152})$, $(T,s_{65})$, $(T,s_{85})$, $(T,s_{65})$, $(T,s_{100})$, $(V_{2},s_{146})$ | $s_{143}$ | $-1.0129 + 0.9700 i$ | $(T,s_{137})$, $(T,s_{135})$, $(T,s_{129})$, $(T,s_{70})$, $(T,s_{147})$, $(T,s_{70})$, $(T,s_{151})$, $(T,s_{60})$, $(T,s_{153})$, $(T,s_{66})$, $(T,s_{86})$, $(T,s_{66})$, $(T,s_{101})$, $(V_{2},s_{147})$ | $s_{144}$ | $-1.414 i$ | $(T,s_{112})$, $(T,s_{112})$, $(T,s_{110})$, $(T,s_{116})$, $(T,s_{110})$, $(L_{1}^{-1},s_{172})$, $(T,s_{108})$, $(T,s_{116})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{110})$, $(T,s_{114})$, $(T,s_{114})$, $(T,s_{172})$, $(T,s_{174})$ | $s_{145}$ | $1.414 i$ | $(T,s_{113})$, $(T,s_{113})$, $(T,s_{111})$, $(T,s_{117})$, $(T,s_{111})$, $(L_{1}^{-1},s_{173})$, $(T,s_{109})$, $(T,s_{117})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{111})$, $(T,s_{115})$, $(T,s_{115})$, $(T,s_{173})$, $(T,s_{175})$ | $s_{146}$ | $-0.880 - 1.108 i$ | $(T,s_{136})$, $(T,s_{142})$, $(T,s_{134})$, $(T,s_{77})$, $(T,s_{150})$, $(T,s_{69})$, $(T,s_{152})$, $(T,s_{69})$, $(T,s_{156})$, $(T,s_{59})$, $(T,s_{100})$, $(T,s_{65})$, $(T,s_{65})$, $(V_{2},s_{142})$ | $s_{147}$ | $-0.880 + 1.108 i$ | $(T,s_{137})$, $(T,s_{143})$, $(T,s_{135})$, $(T,s_{78})$, $(T,s_{151})$, $(T,s_{70})$, $(T,s_{153})$, $(T,s_{70})$, $(T,s_{157})$, $(T,s_{60})$, $(T,s_{101})$, $(T,s_{66})$, $(T,s_{66})$, $(V_{2},s_{143})$ | $s_{148}$ | $0.781 - 1.241 i$ | $(T,s_{126})$, $(T,s_{140})$, $(T,s_{138})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{53})$, $(T,s_{154})$, $(T,s_{98})$, $(T,s_{158})$, $(T,s_{98})$, $(T,s_{164})$, $(T,s_{166})$, $(T,s_{168})$, $(V_{2},s_{154})$ | $s_{149}$ | $0.781 + 1.241 i$ | $(T,s_{127})$, $(T,s_{141})$, $(T,s_{139})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{54})$, $(T,s_{155})$, $(T,s_{99})$, $(T,s_{159})$, $(T,s_{99})$, $(T,s_{165})$, $(T,s_{167})$, $(T,s_{169})$, $(V_{2},s_{155})$ | $s_{150}$ | $-0.713 - 1.295 i$ | $(T,s_{142})$, $(T,s_{146})$, $(T,s_{136})$, $(T,s_{77})$, $(T,s_{77})$, $(T,s_{152})$, $(T,s_{92})$, $(T,s_{156})$, $(T,s_{59})$, $(T,s_{160})$, $(T,s_{59})$, $(T,s_{162})$, $(T,s_{170})$, $(V_{2},s_{152})$ | $s_{151}$ | $-0.713 + 1.295 i$ | $(T,s_{143})$, $(T,s_{147})$, $(T,s_{137})$, $(T,s_{78})$, $(T,s_{78})$, $(T,s_{153})$, $(T,s_{93})$, $(T,s_{157})$, $(T,s_{60})$, $(T,s_{161})$, $(T,s_{60})$, $(T,s_{163})$, $(T,s_{171})$, $(V_{2},s_{153})$ | $s_{152}$ | $-0.694 - 1.366 i$ | $(T,s_{146})$, $(T,s_{142})$, $(T,s_{102})$, $(T,s_{150})$, $(T,s_{77})$, $(T,s_{92})$, $(T,s_{92})$, $(T,s_{156})$, $(T,s_{172})$, $(T,s_{160})$, $(T,s_{178})$, $(T,s_{162})$, $(T,s_{170})$, $(V_{2},s_{150})$ | $s_{153}$ | $-0.694 + 1.366 i$ | $(T,s_{147})$, $(T,s_{143})$, $(T,s_{103})$, $(T,s_{151})$, $(T,s_{78})$, $(T,s_{93})$, $(T,s_{93})$, $(T,s_{157})$, $(T,s_{173})$, $(T,s_{161})$, $(T,s_{179})$, $(T,s_{163})$, $(T,s_{171})$, $(V_{2},s_{151})$ | $s_{154}$ | $0.748 - 1.401 i$ | $(T,s_{140})$, $(T,s_{138})$, $(T,s_{126})$, $(T,s_{148})$, $(T,s_{90})$, $(T,s_{90})$, $(T,s_{106})$, $(T,s_{158})$, $(T,s_{98})$, $(T,s_{164})$, $(T,s_{98})$, $(T,s_{166})$, $(T,s_{168})$, $(V_{2},s_{148})$ | $s_{155}$ | $0.748 + 1.401 i$ | $(T,s_{141})$, $(T,s_{139})$, $(T,s_{127})$, $(T,s_{149})$, $(T,s_{91})$, $(T,s_{91})$, $(T,s_{107})$, $(T,s_{159})$, $(T,s_{99})$, $(T,s_{165})$, $(T,s_{99})$, $(T,s_{167})$, $(T,s_{169})$, $(V_{2},s_{149})$ | $s_{156}$ | $-0.565 - 1.488 i$ | $(T,s_{146})$, $(T,s_{102})$, $(T,s_{150})$, $(T,s_{102})$, $(T,s_{152})$, $(T,s_{114})$, $(T,s_{114})$, $(T,s_{160})$, $(T,s_{174})$, $(T,s_{162})$, $(T,s_{172})$, $(T,s_{178})$, $(T,s_{170})$, $(V_{2},s_{152})$ | $s_{157}$ | $-0.565 + 1.488 i$ | $(T,s_{147})$, $(T,s_{103})$, $(T,s_{151})$, $(T,s_{103})$, $(T,s_{153})$, $(T,s_{115})$, $(T,s_{115})$, $(T,s_{161})$, $(T,s_{175})$, $(T,s_{163})$, $(T,s_{173})$, $(T,s_{179})$, $(T,s_{171})$, $(V_{2},s_{153})$ | $s_{158}$ | $0.571 - 1.501 i$ | $(T,s_{138})$, $(T,s_{140})$, $(T,s_{148})$, $(T,s_{108})$, $(T,s_{154})$, $(T,s_{108})$, $(T,s_{110})$, $(T,s_{172})$, $(T,s_{164})$, $(T,s_{174})$, $(T,s_{166})$, $(T,s_{176})$, $(T,s_{168})$, $(V_{2},s_{164})$ | $s_{159}$ | $0.571 + 1.501 i$ | $(T,s_{139})$, $(T,s_{141})$, $(T,s_{149})$, $(T,s_{109})$, $(T,s_{155})$, $(T,s_{109})$, $(T,s_{111})$, $(T,s_{173})$, $(T,s_{165})$, $(T,s_{175})$, $(T,s_{167})$, $(T,s_{177})$, $(T,s_{169})$, $(V_{2},s_{165})$ | $s_{160}$ | $-0.462 - 1.634 i$ | $(T,s_{146})$, $(T,s_{150})$, $(T,s_{102})$, $(T,s_{152})$, $(T,s_{102})$, $(T,s_{156})$, $(T,s_{168})$, $(T,s_{176})$, $(T,s_{174})$, $(T,s_{162})$, $(T,s_{172})$, $(T,s_{170})$, $(T,s_{178})$, $(V_{2},s_{162})$ | $s_{161}$ | $-0.462 + 1.634 i$ | $(T,s_{147})$, $(T,s_{151})$, $(T,s_{103})$, $(T,s_{153})$, $(T,s_{103})$, $(T,s_{157})$, $(T,s_{169})$, $(T,s_{177})$, $(T,s_{175})$, $(T,s_{163})$, $(T,s_{173})$, $(T,s_{171})$, $(T,s_{179})$, $(V_{2},s_{163})$ | $s_{162}$ | $-0.415 - 1.665 i$ | $(T,s_{146})$, $(T,s_{150})$, $(T,s_{102})$, $(T,s_{152})$, $(T,s_{102})$, $(T,s_{156})$, $(T,s_{168})$, $(T,s_{160})$, $(T,s_{176})$, $(T,s_{174})$, $(T,s_{170})$, $(T,s_{172})$, $(T,s_{178})$, $(V_{2},s_{160})$ | $s_{163}$ | $-0.415 + 1.665 i$ | $(T,s_{147})$, $(T,s_{151})$, $(T,s_{103})$, $(T,s_{153})$, $(T,s_{103})$, $(T,s_{157})$, $(T,s_{169})$, $(T,s_{161})$, $(T,s_{177})$, $(T,s_{175})$, $(T,s_{171})$, $(T,s_{173})$, $(T,s_{179})$, $(V_{2},s_{161})$ | $s_{164}$ | $0.482 - 1.657 i$ | $(T,s_{138})$, $(T,s_{148})$, $(T,s_{110})$, $(T,s_{108})$, $(T,s_{154})$, $(T,s_{158})$, $(T,s_{170})$, $(T,s_{178})$, $(T,s_{172})$, $(T,s_{166})$, $(T,s_{174})$, $(T,s_{176})$, $(T,s_{168})$, $(V_{2},s_{166})$ | $s_{165}$ | $0.482 + 1.657 i$ | $(T,s_{139})$, $(T,s_{149})$, $(T,s_{111})$, $(T,s_{109})$, $(T,s_{155})$, $(T,s_{159})$, $(T,s_{171})$, $(T,s_{179})$, $(T,s_{173})$, $(T,s_{167})$, $(T,s_{175})$, $(T,s_{177})$, $(T,s_{169})$, $(V_{2},s_{167})$ | $s_{166}$ | $0.394 - 1.705 i$ | $(T,s_{112})$, $(T,s_{148})$, $(T,s_{110})$, $(T,s_{154})$, $(T,s_{162})$, $(T,s_{158})$, $(T,s_{170})$, $(T,s_{164})$, $(T,s_{178})$, $(T,s_{172})$, $(T,s_{174})$, $(T,s_{168})$, $(T,s_{176})$, $(V_{2},s_{164})$ | $s_{167}$ | $0.394 + 1.705 i$ | $(T,s_{113})$, $(T,s_{149})$, $(T,s_{111})$, $(T,s_{155})$, $(T,s_{163})$, $(T,s_{159})$, $(T,s_{171})$, $(T,s_{165})$, $(T,s_{179})$, $(T,s_{173})$, $(T,s_{175})$, $(T,s_{169})$, $(T,s_{177})$, $(V_{2},s_{165})$ | $s_{168}$ | $0.248 - 1.741 i$ | $(T,s_{148})$, $(T,s_{112})$, $(T,s_{154})$, $(T,s_{160})$, $(T,s_{158})$, $(T,s_{162})$, $(T,s_{164})$, $(T,s_{170})$, $(T,s_{166})$, $(T,s_{178})$, $(T,s_{172})$, $(T,s_{176})$, $(T,s_{174})$, $(V_{2},s_{176})$ | $s_{169}$ | $0.248 + 1.741 i$ | $(T,s_{149})$, $(T,s_{113})$, $(T,s_{155})$, $(T,s_{161})$, $(T,s_{159})$, $(T,s_{163})$, $(T,s_{165})$, $(T,s_{171})$, $(T,s_{167})$, $(T,s_{179})$, $(T,s_{173})$, $(T,s_{177})$, $(T,s_{175})$, $(V_{2},s_{177})$ | $s_{170}$ | $-0.278 - 1.765 i$ | $(T,s_{150})$, $(T,s_{116})$, $(T,s_{152})$, $(T,s_{164})$, $(T,s_{156})$, $(T,s_{166})$, $(T,s_{160})$, $(T,s_{168})$, $(T,s_{162})$, $(T,s_{176})$, $(T,s_{174})$, $(T,s_{178})$, $(T,s_{172})$, $(V_{2},s_{178})$ | $s_{171}$ | $-0.278 + 1.765 i$ | $(T,s_{151})$, $(T,s_{117})$, $(T,s_{153})$, $(T,s_{165})$, $(T,s_{157})$, $(T,s_{167})$, $(T,s_{161})$, $(T,s_{169})$, $(T,s_{163})$, $(T,s_{177})$, $(T,s_{175})$, $(T,s_{179})$, $(T,s_{173})$, $(V_{2},s_{179})$ | $s_{172}$ | $-0.064 - 1.814 i$ | $(T,s_{110})$, $(T,s_{152})$, $(T,s_{158})$, $(T,s_{156})$, $(T,s_{164})$, $(T,s_{160})$, $(T,s_{166})$, $(T,s_{162})$, $(T,s_{168})$, $(T,s_{170})$, $(T,s_{176})$, $(T,s_{178})$, $(T,s_{174})$, $(V_{2},s_{178})$ | $s_{173}$ | $-0.064 + 1.814 i$ | $(T,s_{111})$, $(T,s_{153})$, $(T,s_{159})$, $(T,s_{157})$, $(T,s_{165})$, $(T,s_{161})$, $(T,s_{167})$, $(T,s_{163})$, $(T,s_{169})$, $(T,s_{171})$, $(T,s_{177})$, $(T,s_{179})$, $(T,s_{175})$, $(V_{2},s_{179})$ | $s_{174}$ | $0.077 - 1.817 i$ | $(T,s_{112})$, $(T,s_{154})$, $(T,s_{156})$, $(T,s_{158})$, $(T,s_{160})$, $(T,s_{164})$, $(T,s_{162})$, $(T,s_{166})$, $(T,s_{170})$, $(T,s_{168})$, $(T,s_{178})$, $(T,s_{176})$, $(T,s_{172})$, $(V_{2},s_{176})$ | $s_{175}$ | $0.077 + 1.817 i$ | $(T,s_{113})$, $(T,s_{155})$, $(T,s_{157})$, $(T,s_{159})$, $(T,s_{161})$, $(T,s_{165})$, $(T,s_{163})$, $(T,s_{167})$, $(T,s_{171})$, $(T,s_{169})$, $(T,s_{179})$, $(T,s_{177})$, $(T,s_{173})$, $(V_{2},s_{177})$ | $s_{176}$ | $0.177 - 1.821 i$ | $(T,s_{112})$, $(T,s_{156})$, $(T,s_{154})$, $(T,s_{158})$, $(T,s_{160})$, $(T,s_{162})$, $(T,s_{164})$, $(T,s_{170})$, $(T,s_{166})$, $(T,s_{178})$, $(T,s_{168})$, $(T,s_{172})$, $(T,s_{174})$, $(V_{2},s_{174})$ | $s_{177}$ | $0.177 + 1.821 i$ | $(T,s_{113})$, $(T,s_{157})$, $(T,s_{155})$, $(T,s_{159})$, $(T,s_{161})$, $(T,s_{163})$, $(T,s_{165})$, $(T,s_{171})$, $(T,s_{167})$, $(T,s_{179})$, $(T,s_{169})$, $(T,s_{173})$, $(T,s_{175})$, $(V_{2},s_{175})$ | $s_{178}$ | $-0.152 - 1.849 i$ | $(T,s_{150})$, $(T,s_{152})$, $(T,s_{158})$, $(T,s_{156})$, $(T,s_{164})$, $(T,s_{160})$, $(T,s_{166})$, $(T,s_{162})$, $(T,s_{168})$, $(T,s_{170})$, $(T,s_{176})$, $(T,s_{174})$, $(T,s_{172})$, $(V_{2},s_{172})$ | $s_{179}$ | $-0.152 + 1.849 i$ | $(T,s_{151})$, $(T,s_{153})$, $(T,s_{159})$, $(T,s_{157})$, $(T,s_{165})$, $(T,s_{161})$, $(T,s_{167})$, $(T,s_{163})$, $(T,s_{169})$, $(T,s_{171})$, $(T,s_{177})$, $(T,s_{175})$, $(T,s_{173})$, $(V_{2},s_{173})$ |
---|
The data in Table $1$ can be retrieved by executing the following Mathematica command:
Mathematica code to retrieve convergence data for $f_4$
convergenceData =Import["https://dl.dropboxusercontent.com/s/lwdia2179ybxefa/aaTest.m?dl=0"];
The following figure shows the singular points as the black dots and the radii of convergence of the $1,2,3,4,5$-cycle branches at the origin with colored circles. Note the number of singular points encompassed by the convergence radius of the $1$-cycle shown in red. The purple circle is over-written by the yellow circle as both the $3$-cycle and $2$-cycle have the same radius of convergence.
Once we have the convergence data, we can easily plot the real or imaginary surfaces of the branch. This is useful if contour integrations over the branch surfaces are to be analyzed. Consider plotting the real surface of the $3$-cycle branch at the origin. According to the convergence summary report above, this branch is generated by Puiseux series $2$ (when sorted as described in Section $15$) although any $3$-cycle series of this conjugate set can generate the branch. The report indicates the $3$-cycle series have radii of convergence $R=|s_{2}|\approx 0.167$.
It's important to understand each series in the conjugate set of Puiseux series for an $n$-cycle branch generates a single-valued sheet of the branch and when all branch sheets are combined produce the analytically-continuous branch surface. Once the singular points have been computed and sorted and Puiseux series generated for the branches at the origin as per Section $15$, the following code can be used to generate the branch sheets of the $3$-cycle branch:
Mathematica code to plot $3$-cycle branch sheets at the origin
seriesIndex = 2;
(* sorted singular points are in theSingularList *)
rEnd = Abs@theSingularList[[2]] // N
rStart = 0.1 rEnd;
(* baseSeries are the Puiseux expansions at the origin*)
myF1[u_] = baseSeries[[seriesIndex, 1 ;; 50]];
theexp = Exponent[myF1[z], z, List];
theNum = Numerator@theexp;
clist = Coefficient[myF1[z], z, theexp];
(* conjugate the base series for this branch *)
f[z_, k_] :=
Sum[clist[[
n]] (Exp[2 k \[Pi] I/cycleSize])^(cycleSize theexp[[n]]) z^
theexp[[n]], {n, 1, Length[clist]}];
theColors = {Red, Blue, Darker@Green, Darker@Yellow, Orange, Pink};
(* generate the branch sheets *)
branchSheets = Table[
ParametricPlot3D[{Re[z] + Re[expCenter], Im[z] + Im[expCenter],
Re[f[z, i - 1]]} /. z -> r Exp[I t], {r, rStart,
rEnd}, {t, -\[Pi], \[Pi]}, BoxRatios -> {1, 1, 1},
PlotStyle -> theColors[[i]]],
{i, 1, cycleSize}];
(* plot the branch sheets separately *)
GraphicsGrid[{branchSheets}]
No comments:
Post a Comment